CLIMATE ADAPTATION FORUM

Lessons Learned: How We Adapt on the Road to Climate Adaptation

WELCOME

Ann Gisinger

Forum Organizer

Executive Director & President Environmental Business Council

THANKYOU SPONSORS & SUPPORTERS

Science for a healthy planet and safer world

CLEAN WATER ACTION | CLEAN WATER FUND

OFFICIAL SPONSORS OF VIRTUAL PRESENTATION

Luz Arregoces

Director of Community Relations New England Aquarium

OFFICIAL SPONSORS OF VIRTUAL PRESENTATION

Blake A. Martin

Vice President, Market Leader Weston & Sampson

PROGRAM INTRODUCTION

Kelly Knee

Forum Organizer

Executive Director RPS Ocean Science

FORUM CO-CHAIRS

Indrani Ghosh, PhD

Resiliency Senior Technical Leader Weston & Sampson

Carolyn Norkiewicz

Regional Coordinator for Greater Boston, Municipal Vulnerability Program Executive Office of Energy and Environmental Affairs Commonwealth of Massachusetts

Strategies for Water Supply and Water Treatment Adaptation In Response to Climate Change and Decarbonization Goals

Scott Struck

Principal Scientist/Engineer National Renewable Energy Laboratory (NREL)

Strategies for Water Supply and Water Treatment Adaptation In Response to Climate Change and Decarbonization Goals

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Offices. The views expressed in the presentation do not represent the views of the DOE or the U.S. Government, only those of the author.

Scott Struck, Ph.D., ENV SP, F.EWRI Integrated Water Systems National Renewable Energy Laboratory Golden, Colorado

Overview

- Water-Energy nexus
- Impacts of climate change on water systems
- Adaptations for water systems
- Beneficial capture and use?
- Policy / regulatory landscape
- Changing the paradigm: alternative water sources research directions

Climate Change is Happening!

News & Features V Maps & Data V Teaching Climate V

e 🗸 🛛 Resilience Toolkit 🛛 About 🗸

Home

Climate.gov Media

U.S. ANNUAL TEMPERATURE COMPARED TO 20th-CENTURY AVERAGE

Search Climate.gov

GLOBAL CLIMATE CHANGE Vital Signs of the Planet

Q NEWS | September 14, 2023

NASA Announces Summer 2023 Hottest on Record

This map depicts global temperature anomalies for meteorological summer in 2023 (June, July, and August). It shows how much warmer or cooler different regions of Earth were compared to the baseline average from 1961 to 1980. Credit: NASN's Earth Observatory/Lauren Dauphin

Summer of 2023 was Earth's hottest since global records began in 1880, according to scientists at NASA's Goddard Institute of Space Studies (GISS) in New York.

The months of June, July, and August combined were 0.41 degrees Fahrenheit (0.23 degrees Celsius) warmer than any other summer in NASA's record, and 2.1 degrees F (1.2 C) warmer than the average summer between 1951 and 1980. August alone was 2.2 F (1.2 C) warmer than the average. June through August is considered meteorological summer in the Northern Hemisphere.

Water – Energy Nexus

- Energy Use in 2021
 - Coal: ↑ 14%
 - Petroleum: \uparrow 9%
- Increase due to:
 - \uparrow in NG prices
 - Transportation
- **↑** 20% in Solar
- \uparrow 11% in Wind
- 🔱 12% in Hydro
- 🔸 4% in Geothermal

Source: LBML July, 2021. Data is based on DOE/EIA MER (2019). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under Whose empires the work was performed. Distributed electricity segregents only retail electricity also and does not include self-generation. LBA reports commuption of resemble resources (i.e., hyto, wind, geothemal and solar) for electricity in PU-equivalent values by assuming a typical fossil field plant heat rate. The efficiency of electricity production is calculated as the total retail electricity elelivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 6X for the transportation sector and 4Pi or the industrial sector, which was updated in 2DT /or Fuelter OBY's analysis of manifesturing. Totals are not equal and components due to indegendent rounding. LBML=44-10827

Water – Energy Nexus

- Energy Use in 2021
 - Coal: ↑ 14%
 - Petroleum: ↑ 9%
- Increase due to:
 - \uparrow in NG prices
 - Transportation
- **↑** 20% in Solar
- 11% in Wind
- 🔱 12% in Hydro
- 🔸 4% in Geothermal

Water – Energy Nexus

State Wind and Solar Leaders

Texas generated more electricity from wind and utility-scale solar than any other state, largely due to dominance in wind

U.S. WIND AND SOLAR ELECTRICITY GENERATION ratt-hours ranked by combined totals, 2022

gigamati	nours, runneu of contonne	
Wind	Solar	

Wind Solar			Ciar				
(יכ ר	ок 40	K 60	Watt-nour:	100K	120K	140K
			N 00		TOOK	1201	
California			5	2 0 2 7			136,118
California			J.	2,927			
Oklahama			45,0	00			
Kansas		20	536				
Illinois		24 68	350				
Colorado		19,152	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
North Dakota		16.571					
New Mexico		16.451					
Minnesota		16.328					
Nebraska	1	2,641					
North Carolina	1	2,014					
Florida	1	1,336					
Indiana	10	0,928					
Oregon	10	,761					
South Dakota	10	,327					
Wyoming	10	,206					
Michigan	10	,004					
Washington	9,2	242					
Nevada	9,1	19					
Arizona	7,9	46					
Missouri	7,6	28					
Georgia	6,9	22					
New York	6,8	95					
Virginia	4,74	10					
Utan	4,5/	0					
Unio	4,09	6					
Bonnaylyania	4,00	1					
Fennsylvarila	2 4,02	2					
Maino	2 742	2					
Wisconsin	2 632						
South Carolina	2,052						
Massachusetts	2.270)					
West Virginia	2.045						
New Jersey	1,660						
Maryland	1,260						
Hawaii	1,202						
Alabama	894						
Arkansas	725						
Tennessee	717						
Rhode Island	648						
Vermont	621						
Mississippi	507						
New Hampshire	486						
Connecticut	452						
Louisiana	193						
Alaska	144						
Delaware	/ I 5 1						
District of Columbia	20						
District of Columbia							

NOTE: Due to rounding or lack of available data, some states with zero values listed may have small amounts of that resource.

Texas on top!

- **Energy Use in 2021**
 - − Coal: ↑ 14%
 - Petroleum: \uparrow 9%
- Increase due to:
 - \uparrow in NG prices
 - Transportation
- 1 20% in Solar
- \uparrow 11% in Wind
- \downarrow 12% in Hydro
- \downarrow 4% in Geothermal

Climate Adaptation Has Started!

Climate Adaptation Plans

In 2021, EPA released its US EPA's Climate Adaptation Plan: October 2021 (pdf) (2.31 MB, October 2021, 231-R-210-01) in response to Executive Order (E.O.) 14008: Tackling the Climate Crisis at Home and Abroad. EPA's Climate Adaptation Action Plan accelerates and focuses attention on five priority actions the Agency will take over the next four years to increase human and ecosystem resilience as the climate changes and disruptive impacts increase:

PHOTO DESCRIPTION: PARTICIPANTS PROVIDE FEEDBACK AT THE RESULENCE SCHOOLS CONSORTIUM 2ND SCHOOL SUMMIT AT BROOKLYN COLLEGE. PHOTO CREDIT: TERI BRENNAN.

- 1. Integrate climate adaptation into
- EPA programs, policies, rulemaking processes, and enforcement activities.
- 2. Consult and partner with Tribes, states, territories, local governments, environmental justice organizations, community groups, businesses, and other federal agencies to strengthen adaptive capacity and increase the resilience of the nation, with a particular focus on advancing environmental justice.
- Implement measures to protect the Agency's workforce, facilities, critical infrastructure, supply chains, and procurement processes from the risks posed by climate change.
- 4. Measure and evaluate performance.
- 5. Identify and address climate adaptation science needs.

Check out the EPA Climate Adaptation Website: EPA.gov/Climate-Adaptation

2021 Climate Adaptation and Resilience Plan

Report to the White House National Climate Task Force and Federal Chief Sustainability Officer August 2021

CLIMATE READY BOSTON

7

Urban and Suburban Adaptations

Observations

- Extreme weather events (heatwaves, floods, droughts)
- Increased air pollution
- Sea level rise

Impacts

- urban heat island generation
- Infrastructure damage and failure
- Power outages
- Forced displacement
- Increased pressures on mental health
- Increased hunger and poor nutrition
- Increased disease and premature mortality

Among weather-related fatalities, heat was the cause of more deaths <u>between 1999-2018</u> in the US than any other natural hazard

Urban and Suburban Adaptations

Adaptations

- Climate smart build by considering projected climate changes
- Green infrastructure and nature-based solutions
- Living shorelines and beneficial use of dredged material
- Invest in cooling techniques
- Consider vulnerable populations
- Embrace urban growth with clean energy solutions

Agricultural Adaptations

Observations

- Annual average and seasonal air temperatures are increasing
- Seasons are shifting
- The number of hot days and hot nights are increasing
- Precipitation patterns are changing

Impacts

- An increase of extreme precipitation events increases risk of damage to crops, soils, and infrastructure
- An increase of flood damage
- Severe wind and storm hazards may increase
- Warmer temperatures increase the potential for soil moisture stress and drought
- Changes in weed species and distribution
- Pest and disease pressures increases

Agricultural Adaptations

Adaptations

- Change selection of crops, timing, and location of field operations
- Match management practices to water supply and demand
- Increased pest management and control of invasive plant species
- Diversifying crop species and rotations with new conditions
- Integrating livestock with crop production systems
- Reduce peak flow, runoff velocity, and soil erosion and improve soil quality
- Minimizing off-farm flows of nutrients and pesticides
- Implementing more efficient irrigation practices

ADAPTATION RESOURCES FOR AGRICULTURE

Responding to Climate Variability and Change in the Midwest and Northeast

A product of the USDA Midwest, Northeast, and Northern Forests Climate Hubs

Adaptation Challenges – Significant, Difficult to Predict

Maui has no landfills certified to take hazardous waste. So, the EPA is forced to ship hazardous waste to licensed disposal sites on the West Coast. Since 1991, Boston has experienced 21 events that triggered federal or state disaster declarations.

RESEARCH ARTICLE | ENVIRONMENTAL SCIENCES | 👌

f 🎐 in 🖂 🛄

Growing impact of wildfire on western US water supply

A. Park Williams 🗧 🖾 , Ben Livneh 6, Karen A. McKinnon 6, 🖅 and Dennis P. Lettenmaier Authors Info & Affiliations

Edited by Andrea Rinaldo, Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; received July 29, 2021; accepted January 10, 2022

February 22, 2022 119 (10) e2114069119 https://doi.org/10.1073/pnas.2114069119

№ 10,562 | 16

Significance

How will increasing wildfire activity affe United States (WUS)? Among basins wi significantly enhanced by an average of

Plastic pipes are polluting drinking water systems after wildfires – it's a risk in urban fires, too

Adaptations for Water Supply – Capture, Use, Reuse, and Recover

Graphic showing the two means of groundwater water replenishment: surface spreading inland and freshwater injection along the coast.

in

Works Rio Hondo Spreading Grounds

Alternative Water Supplies in California

Henry McCann, Alvar Escriva-Bou, and Kurt Schwabe

ENGLISH PDF 🛓 PDF EN ESPAÑOL 🛓

🎔 f in 🕿 🕀

Supported with funding from the S. D. Bechtel, Jr. Foundation and the US Environmental Protection Agency (under Assistance Agreement No. 83586701)

Alternative supplies are a small but important part of the state's water portfolio. Alternative water sources—recycled wastewater, urban stormwater, and desalinated seawater and brackish water—now provide 2–3% of the state's urban and farm water supply, and they are growing rapidly. Recycled water use has more than doubled since the late 1980s to 700,000 acre-

Can We Capture, Use, Reuse, and Recover Water?

- Kind of... Perhaps... Mostly... Depends... Yes!!!
- Information and Tools
- But...regulations matter!

Introducing the REUSExplorer: A Tool to Examine Water Reuse Regulations

National Water Reuse Action Plan

Improving the Security, Sustainability, and Resilience of Our Nation's Water Resources

https://www.epa.gov/system/files/documents/ 2022-03/wrap-pure-potential-report.pdf

States with Onsite Non-Potable Water Reuse Regulations or Guidelines

States with Water Reuse Regulations or Guidelines for Landscaping

States with Centralized Non-Potable Water Reuse Regulations or Guidelines

Example Regulatory Requirement

• Austin, TX

Austin

Customer Service - Infrastructure - Saving Water

New commercial and multi-family projects with cooling towers have been required to reuse condensate or use non-potable water to make up evaporative losses since September 5, 2017 (<u>UMC §310.8 & §1126.0</u>).

Beginning December 1, 2023 Onsite Water Reuse Systems will also be required for new commercial and multi-family development projects of 250,000 gross square feet or greater (LDC §25-9-412). These projects will have to collect and treat either rainwater and air conditioner condensate or graywater for reuse in buildings for toilet/urinal flushing, laundry, irrigation, and cooling. Home

Alternative Water Sources

Purpose

In December 2020, the City of Austin adopted the <u>Onsite Water Reuse Systems</u> <u>Ordinance</u>, adding Chapter I5-13 to the City of Austin Code, to regulate the collection, treatment, and use of alternative water sources for non-potable uses in multi-family and commercial buildings.

Who Must Comply?

Any commercial or multi-family project that uses rainwater, condensate water, stormwater, graywater or foundation drain water for non-potable applications such as toilet flushing or irrigation must obtain a permit from Austin Water. See "How to Obtain Project Approval" below for details on obtaining a permit.

Which Projects are Required to Install an Onsite Water Reuse System?

New commercial and multi-family projects with cooling towers have been required to reuse condensate or use non-potable water to make up evaporative losses since September 5, 2017 (<u>UMC §310.8 & §1126.0</u>).

Beginning December 1, 2023 Onsite Water Reuse Systems will also be required for new commercial and multi-family development projects of 250,000 gross square feet or greater (<u>LDC §25-9-412</u>). These projects will have to collect and treat either rainwater and air conditioner condensate or graywater for reuse in buildings for toilet/urinal flushing, laundry, irrigation, and cooling.

Integrated Water Systems Research

Water Security & Resiliency | Circular Economy | Decarbonization | Environmental & Social Equity

Research Priorities: MA(A)D Water

- Modular, Adaptive, (Autonomous), Decentralized Water Systems
 - Modular: Fit-for-purpose, easily replicable, can be expanded or reduced with need, often mobile
 - Adaptive: Can be quickly and responsively modified to meet immediate needs
 - Decentralized: Dispersed, distributed, and localized

MAD water: Integrating modular, adaptive, and decentralized approaches for water security in the climate change era

 Amber Wutich¹ [©] | Patrick Thomson² [©] | Wendy Jepson^{3,4} [©] |

 Justin Stoler^{5,6,7} [©] | Alicia D. Cooperman⁸ [©] | James Doss-Gollin⁹ [©] |

 Anish Jantrania¹⁰ [©] | Alex Mayer^{11,12} [©] | Jami Nelson-Nuñez¹³ [©] |

 W. Shane Walker¹¹ [©] | Paul Westerhoff¹⁴ [©]

¹School of Human Evolution & Social Change, Arizona State University, Tempe, Arizona, USA ²School of Geography and the Environment, University of Oxford, Oxford, UK ³Department of Geography, Texas A&M University, College Station, Texas, USA ⁴Texas Water Resources Institute, Texas A&M AgriLife Research, College Station, Texas, USA ⁵Department of Geography and Sustainable Development, University of Miami, Coral Gables, Florida, USA ⁶Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, Florida, USA ⁷Department of Public Health Sciences, Miller School of Medicine, Miami, Florida, USA ⁸Department of Public George Washington University, Washington D.C., USA ⁹Department of Political Science, George Washington University, Houston, Texas, USA ¹⁰Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA ¹¹Department of Evolution Lingineering, University of Texas-El Paso, El Paso, Texas, USA ¹²Center for Environmental Resource Management, University Of Texas-El Paso, El Paso, Texas, USA ¹³Department of Political Science, University of New Mexico, Albuquerque, New Mexico, USA ¹⁴School of Sustainable Engineering and The Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, diversity, Partice Paso, El Paso, Texas, USA

https://wires.onlinelibrary.wiley.com/doi/10.1002/wat2.1680

Autonomous?

The Largest Federal Investment in Desalination, Water Reuse, and other Non-traditional waters R&D since the 1960's

- 5-Year, \$110M+ "early-stage applied research" program from DOE's Advanced Manufacturing Office
- \$23 million in cost share support
- Goal: 75% reduction in cost and energy of beneficial use of non-traditional waters

Nearly 1,500 individuals have joined the (free) NAWI Alliance

NAWI Purpose

Climate change will be felt through the water and energy systems!

Adaptation: Securing water supplies with non-traditional waters

Mitigation: Reducing the cost and carbon intensity of advanced treatment

NAWI Goals and Approach

Centralized Systems

Planning: Long lead time **Design: Custom-designed** Cost: \$B Distribution: 1-3 per city Impact: large but susceptible

Manufactured

Cost: \$K **Distribution: small systems** Impact: smaller and resilient

NAWI's Goal: Research and innovation to develop products that enable cost-effective distributed water treatment and reuse

NAWI & NREL Integrated Water Systems Research

Centralized Systems

Access: long / challenging

Energy uses for water

- & wastewater:
- Treatment (FFP)
- Power/Pumping (with RE)

Mitigation of energy impacts:

- Storage
- Time-of-use operations
- Decentralized systems
- Efficient treatment
- Pump maintenance & VFDs

Design: custom Cost: SB Distribution: 1 - 5 per city Impact: large but susceptible **Distributed Systems** Access: short / easy Design: modular / scalable Cost: \$K Distribution: 1 per building/community Impact: smaller but resilient

Embedded Energy Map

Conclusion

- Capture and Use/Reuse must be a part of a resilient water portfolio
- Policy / Regulatory Landscape
 Complex
- Leading Treatment Technologies and Approaches
 - Disruptive Technology
- Convergence Research
 - Social and economic
- Holistic Understanding

Water and energy efficiency comes from conservation, technological advances, and treatment appropriate for fit-for-purpose uses.²⁶

Thank You

Scott Struck, Ph.D., ENV SP, F.EWRI Water Systems Research Scientist/Engineer Scott.Struck@nrel.gov 1 (303) 630-5292

https://www.nrel.gov/research/staff/scott-struck.html

Funding and Technical Assistance for Climate Resilient Communities

Robyn DeYoung

Lead of Green Infrastructure Program US Environmental Protection Agency (EPA)

Funding and Financing Green Infrastructure for Resilient Communities

Robyn DeYoung, U.S. EPA, Office of Water Green Infrastructure National Program Manager October 12, 2023

Sustainable and Resilient

Communities

Stormwater Smart

Communication tools to enhance stormwater managers' public education and engagement

INCREASE

PROMOTE PRACTICES to Manage Stormwater

https://www.epa.gov/npdes/stormwater-smart-outreach-tools

- A set of <u>design concepts</u> that can help communities address natural hazards, adapt to climate change, and achieve a range of economic, environmental, and equity goals.
- Intended to be an engaging, easily accessible resource that complements more detailed policy guides and planning resources.

Estimating the Costs and Performance of Green Infrastructure

EPA's Green Infrastructure Modeling Toolkit

Visit: <u>https://www.epa.gov/water-research/green-infrastructure-modeling-toolkit</u>

Funding and Financing

Bipartisan Infrastructure Law

State & Tribal Grants	Total = \$55.426 billion	Environmental Programs & Management	Total = \$1.959 billion	
Clean Water State Develving Fund		Geographic Programs	\$1.717 billion	
Traditional	\$11.713 billion	Great Lakes Restoration	\$1 billion	
		Chesapeake Bay	\$238 million	
Drinking Water State Revolving Fund	\$11.713 billion	San Francisco Bay	\$24 million	
Traditional		Puget Sound	\$89 million	
Lead Service Lines Drinking Water State Revolving Fund	\$15 billion	Long Island Sound	\$106 million	
		Gulf of Mexico	\$53 million	
PFAS Clean Water State Revolving	\$1 billion	South Florida	\$16 million	
		Lake Champlain	\$40 million	
		Lake Pontchartrain	\$53 million	
PFAS Drinking Water State Revolving	\$4 billion	Southern New England Estuaries	\$15 million	
runu		Columbia River Basin	\$79 million	
PFAS Small & Disadvantaged	\$5 billion	Other, Pacific Northwest \$4 million		
Underground Injection Control Grants	\$50 million	National Estuary Program	\$132 million	
		Gulf of Mexico and MS and OH Rivers Hypoxia	\$60 million	
Brownfields	Ş1.5 billion	Class VI Wells/Underground Injection Control	\$25 million	
Pollution Prevention	\$100 million	Battery Recycling Best Practices \$10 million		
Save Our Seas 2.0	\$275 million	Battery Recycling Labeling \$15 million		
RECYCLE Act	\$75 million	Superfund	Total = \$3.5 billion	
Clean School Buses	\$5 billion	Remedial Cleanups	\$3.5 billion	

Environmental Finance Centers Supporting Communities with BIL funding

- Delta Institute
- Hawaii Community Foundation
- National Rural Water Association
- Rural Community Assistance Corporation, West Sacramento
- Southeast Rural Community Assistance Project, Inc.
- Syracuse University
- University of Maine System
- University of Maryland

- University of New Mexico
- University of North Carolina at Chapel Hill
- Wichita State University
- WSOS Community Action Commission, Inc.
- Moonshot Missions
- Rural Community Assistance Partnership, Washington, DC
- Sand County Foundation
- U.S. Water Alliance

Stormwater and Green Infrastructure BIL Technical Assistance

Planning and Asset Management Technical Assistance

Plan Development

- Assist with identifying infrastructure projects in a holistic, sustainable approach, tailored to community needs:
 - Municipal Integrated Plans/Long-Term Stormwater Plans
 - Green infrastructure opportunities analyses
 - Vulnerability and Risk Assessments
 Watershed Management Plans
- Coordinate and stack other community improvement efforts.

Asset Management

- Develop maps of stormwater, and wastewater systems.
- Assist water systems in locating assets and developing inventories.
- Develop an asset management plan
- Develop O&M plans
- How to factor in plant establishment period using CW SRF Funding

Clean Water SRF States Funding Green Infrastructure through the Green Project Reserve, 2009-2022

Cumulative Spending on GPR Green Infrastructure

Contact: WaterTA@epa.gov

Inflation Reduction Act Summary

EPA received \$41.5 billion in appropriations to support 24 new and existing programs. This makes EPA the second largest recipient of discretionary funding after USDA. Additionally, Superfund will receive ~\$11.7+ billion in tax revenues.

Six new EPA programs account for 98% of this total funding:

Climate Pollution Reduction Grants (\$5 billion) – Provide grants to states, territories, municipalities, and Tribes to develop plans to reduce greenhouse gas emissions and implement those plans. At least one grant will go to an eligible entity in every state.

Greenhouse Gas Reduction Fund (\$27 billion) – Capitalize existing and new grantees that will invest in emission reduction projects at the state and local level.

Environmental and Climate Justice Block Grants (\$3 billion) – Fund community-based nonprofit organizations to support a wide range of climate and environmental justice activities.

- Grants to Reduce Air Pollution at Ports (\$3 billion) Award rebates and grants for ports to purchase and install zero-emission technology and develop climate action plans.
- Methane Emissions Reduction Program (\$1.5 billion) Fund grants and technical assistance to accelerate emissions reduction from petroleum and natural gas systems. Also establish a methane waste emissions charge starting at \$900 per ton in 2024 and increasing to \$1,500 per ton by 2026.
- Clean Heavy-Duty Vehicles (\$1 billion) Provide grants, rebates, and contract support to replace heavy-duty vehicles with zero emission alternatives. \$400 million is specifically for nonattainment areas.

Environmental Justice Thriving Communities

There are 17 regionally and nationally based TCTACs to provide assistance benefiting overburdened communities throughout the US.

This network of Regional and National Technical Assistance (TA) Centers will provide **free technical assistance, training,** and **capacity-building** support to communities and stakeholders who need it most.

Visit: <u>https://www.epa.gov/environmentaljustice/environmental-justice-thriving-communities-technical-assistance-centers</u>

Grant proposal preparation assistance

Manage federal grants (e.g., accounting, policies, controls)

Identify funding sources to apply for (federal, state, local, private)

Navigate SAM.gov and Grants.gov registration process and other portals related to grants

Provide capacity building to engage with decisionmakers at all levels of government

Funding Opportunities for Green Infrastructure Stacking Funding and Financing Options

Navigating Federal Funding for Green Infrastructure and Nature-Based Solutions

AGENCY	PROGRAM	PLANNING & DESIGN	IMPLEMENTATION OR CONSTRUCTION	OPERATIONS & MAINTENANCE	MONITORING
EDA	American Rescue Plan Program: Economic Adjustment Assistance Funds	YES	YES	NO	NO
EDA	Public Works and Economic Adjustment Assistance Funds	YES	YES	NO	NO
EPA	Clean Water State Revolving Fund (CWSRF) ¹	YES	YES	NO	NO
EPA	Environmental Justice Collaborative Problem-Solving Cooperative Agreement Program	YES	YES	NO	YES
EPA	Environmental Justice Government-to-Government (EJG2G) Program	YES	YES	NO	YES
EPA	Brownfields Grants	YES	YES	NO	NO
EPA	Great Lakes Restoration Initiative (GLRI) Funds	YES	YES	NO	NO
EPA	Green Streets, Green Jobs, Green Towns (G3) Grant Program	YES	YES	NO	NO
EPA	Sewer Overflow and Stormwater Reuse Municipal Grants (OSG)	YES	YES	NO	NO
EPA	Section 319 Nonpoint Source Grants	YES	YES	YES	YES
EPA	Water Infrastructure Finance and Innovation Act (WIFIA)	YES	YES	NO	NO
FEMA	Building Resilient Infrastructure and Communities (BRIC) ²	YES	YES	NO	NO
FHWA	Surface Transportation Block Grant (STBG) Program – Transportation Alternatives	YES	YES	YES	NO
EH\\\/A	Promoting Resilient Operations for Transformative, Efficient, and	VES	VES	NO	NO

Building Next Generation Workforce

The Campus RainWorks Challenge 11th Year is live!

Team registration: Jan. 2-31, 2024 Entries due: May 24th 2024 Winners announced: Summer 2024

\$50,000 Prize money for winners

Rainworks@epa.gov

2020 Campus RainWorks 1st Place UPenn <a>EPA

"I learned economics. Campus RainWorks is not just a competition for us, we are actually implementing projects on the ground, so funding is a big part of it."

Mrinalini V.

Innovative Water Infrastructure Workforce Development Grant Program

Over \$20 million in grant funding is now available for eligible organizations interested in building a stronger pool of skilled and diverse workers in the water and wastewater utilities sector.

- Project Area 1: Targeted internships apprenticeships for skilled water utility trades.
- **Project Area 2:** Education programs designed for elementary, secondary, and higher education students.
- **Project Area 3:** Regional industry and workforce development collaborations to hiring qualified candidates.
- **Project Area 4:** Leadership development, occupational training, mentoring, or cross-training programs that support career advancement.
- **Project Area 5:** Education and training programs designed for decentralized (septic) water workers to support public health for communities that rely on private wells for drinking water or septic systems.
- **Project Area 6:** Training and development for workforce development programs that reduce greenhouse gas emissions and other air pollutants to benefit disadvantaged communities.

Apply Before November 17, 2023

♦ EPA

Centers of Excellence for Stormwater Infrastructure Technologies Grant Program

Authorized in FY23 budget, EPA is working internally to build this new grant program.

- Conduct research on and create an inventory of new and emerging stormwater control infrastructure technologies;
- Analyze innovative financial programs supporting stormwater infrastructure implementation;
- Provide technical assistance to states, tribal communities, and local governments who want to implement innovative stormwater infrastructure technologies;
- Collaborate with educational institutions as well as public and private organizations including community-based public-private partnerships; and
- Establish and maintain a national electronic clearinghouse center to collect data and disseminate information and findings from CESITs to the stormwater sector.

Coming Soon!

EPA posts all grant opportunities on <u>https://www.epa.gov/grants</u> & grants.gov.

Thank you!

Robyn DeYoung

U.S. EPA Green Infrastructure Lead

Deyoung.robyn@epa.gov

Get updates from us!

Join greenstream, an EPA listserv featuring updates on green infrastructure publications, training, and funding opportunities, send an email to join-greenstream@lists.epa.gov

MODERATED DISCUSSION

Carolyn Norkiewicz

Forum Co-Chair

Regional Coordinator for Greater Boston Municipal Vulnerability Program Executive Office of Energy and Environmental Affairs Commonwealth of Massachusetts

SAVE THE DATE!

Historical examples of successful quick mobilization to address critical environmental challenges – What does it take to shift a cultural mindset?

November 30, 2023

